简单线性回归模型
第一步:数据预处理
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdataset = pd.read_csv('../../datasets/Day2.csv')X = dataset.iloc[ : , : 1 ].valuesY = dataset.iloc[ : , 1 ].valuesfrom sklearn.model_selection import train_test_splitX_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
第二步:训练集使用简单线性回归模型来训练
from sklearn.linear_model import LinearRegressionregressor = LinearRegression()regressor = regressor.fit(X_train, Y_train)
第三步:预测结果
Y_pred = regressor.predict(X_test)
第四步:可视化
训练集结果可视化
plt.scatter(X_train , Y_train, color = 'red')plt.plot(X_train , regressor.predict(X_train), color ='blue')plt.show()
测试集结果可视化
plt.scatter(X_test , Y_test, color = 'red')plt.plot(X_test , regressor.predict(X_test), color ='blue')plt.show()
